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In multicellular organisms, cellular behaviour is tightly regulated to allow proper embry-
onic development and maintenance of adult tissue. A critical component in this control is
the communication between cells via signalling pathways, as errors in intercellular com-
munication can induce developmental defects or diseases such as cancer. It has
become clear over the last years that signalling is not static but varies in activity over
time. Feedback mechanisms present in every signalling pathway lead to diverse dynamic
phenotypes, such as transient activation, signal ramping or oscillations, occurring in a
cell type- and stage-dependent manner. In cells, such dynamics can exert various func-
tions that allow organisms to develop in a robust and reproducible way. Here, we focus
on Erk, Wnt and Notch signalling pathways, which are dynamic in several tissue types
and organisms, including the periodic segmentation of vertebrate embryos, and are often
dysregulated in cancer. We will discuss how biochemical processes influence their
dynamics and how these impact on cellular behaviour within multicellular systems.

Introduction
Communication between cells coordinates the self-organization process of embryonic development.
Cell proliferation, differentiation, migration and death have to be regulated across scales — from
single-cell to organism level — to allow the formation of an organism from a single cell. When cells
communicate, an extracellular signal often induces an intracellular signal transduction cascade, which
results in a cellular response encompassing, for instance, changes in cytoskeleton, metabolism or gene
expression. Regulatory and feedback mechanisms at every level of such transduction cascades modu-
late pathway activity over time [1]. This leads to temporal variations in signalling, e.g. transient, pulsa-
tile, ramping or oscillatory activity, collectively termed signalling dynamics [2]. Signalling oscillations
are, for example, found in neural stem cells and the developing pancreas [3–5]. Dynamic changes in
signalling can also occur upon changes in the levels of signalling molecules surrounding a cell, for
instance when a cell moves through a spatial gradient of signalling molecules. Such gradients, also
termed morphogen gradients, have been shown to organize the embryo into its anteroposterior (head
to tail), dorsoventral (back to front), proximodistal and left-right axes [6,7].

Function of signalling dynamics
While feedback mechanisms might initially have evolved to keep signalling activity in check and
prevent, for instance, overactivation, the resulting signalling dynamics have diverse functions in model
systems found today [8,9].

Dynamic signal encoding
Often, signalling dynamics are used to encode and transmit biological information in the dynamics
(Figure 1A). This has two consequences for the signalling process: (A) Encoding information in
dynamics can make the signal more robust to noise and ensure proper transmission. Noise naturally
occurs in a cell as a result of all biochemical reactions, leading to random fluctuations in, e.g. gene
expression, protein–protein interactions, post-translational modifications and metabolic changes.
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Therefore, information transmission is less accurate and precise when encoding information in the absolute sig-
nalling activity. Such information loss can be reduced or prevented by encoding information in the dynamics
of ERK activity, Ca2+ concentration or nuclear localization of the transcription factor NFκB [10,11]. In
Xenopus embryos, the fold-change in Wnt signalling activity controls development even with varying levels of
baseline Wnt signalling [12]. (B) Encoding information in the dynamics increases the versatility of signalling
pathways [13]. How a dozen of signalling pathways can transmit diverse information with high specificity in
organisms has been a matter of investigation for decades. Besides employing distinct isoforms of pathway com-
ponents, combinatorial use of multiple pathways and activation of specific transduction cascades, varying the
dynamics is another means to increase the repertoire of signalling modalities [14]. A classic example is the
stimulation of the rat PC12 (pheochromocytoma) cell line by growth factors. While epidermal growth factor
(EGF) induces a transient ERK signal resulting in proliferation, nerve growth factor (NGF) or fibroblast growth
factor (FGF) activate a sustained ERK response leading to neuronal differentiation (Figure 1B) [15–17].

Figure 1. Cellular signalling dynamics.

(A) Signal transduction is induced when a ligand interacts with the receptor, which leads to the activation of effector proteins.

Effectors exert various functions in cells, among which is the induction of gene expression. The type, concentration and

dynamics of ligands can be encoded in signalling dynamics, such as the amplitude of a stable signal, the amplitude and

duration of a transient signal and the amplitude, duration and frequency of an oscillatory signal or the fold-change of a ramping

signal. (B) An example of dynamic signal encoding is the effect of growth factors on PC12 cells. EGF induces a transient signal

of Erk activity, which results in proliferation, while FGF or NGF induce a sustained signal, which leads to differentiation.

(C) Oscillatory signals can coordinate periodic events, such as the sequential segment formation in vertebrate embryos.
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Regulation of repetitive events
Apart from transmitting information in the dynamics of a signal, oscillations can control periodic events. This
way, oscillations of the circadian clock adjust physiological processes of the body to the repeating day-night
cycles [18]. In embryonic development, oscillations regulate the sequential segmentation of vertebrate embryos
(Figure 1C) [19] and the consecutive steps of larval development in Caenorhabditis elegans [20].

Communication across tissues
Tissue-wide oscillation dynamics can synchronize cells within a multicellular system to regulate collective
behaviour. It allows the efficient transfer of information from one side of a tissue to the other. This is exempli-
fied by the coordination of tissue growth with segmentation in vertebrate embryos to ensure the formation of
properly sized embryos [19].
How dynamics are decoded to induce specific cellular responses is still largely unknown. For dynamic signal

encoding, the change in signal activity over time has to be detected and converted to an absolute signal, such
as the expression of differentiation markers. In a ramping signal, information can be encoded in its derivative,
while in an oscillatory signal, the frequency, amplitude or number of oscillations can encode information
(Figure 1A) [2]. It has been shown that in mouse and human cell cultures, the number of NFκB oscillations is
directly converted to a stepwise expression of different sets of target genes [21–23].

Signalling dynamics from a biochemical perspective
Intracellular signalling is initiated when a ligand from a signal-sending cell interacts with a receptor on a
signal-receiving cell. Signalling can be autocrine, when signal-sending and -receiving cell coincide, paracrine,
when neighbouring cells communicate with each other, or endocrine, when signal-sending and -receiving cells
are spatially separated and signalling molecules travel via the circulation as in the case of hormones. An intra-
cellular signalling event is initiated upon ligand–receptor interaction, entailing protein–protein interactions,
post-translational modifications, proteolytic cleavages, protein translocations or lysosomal degradation of
pathway components. These ultimately lead to changes in enzyme activities, which modulate e.g. metabolism
or cytoskeleton, and to changes in gene expression. The dynamics of this signalling process directly depend on
the thermodynamics of the system itself, the kinetics of the individual reactions and induced feedback mechan-
isms (Figures 1, 2A).
The expression levels of all involved signalling components and their isoforms can vary widely in a cell type-

and developmental stage-dependent manner [24–27]. The concentrations of receptors on the cell surface and
ligands and their respective binding affinities and geometry are critical determinants of the maximal and actual
extent of pathway activation. In combination with the stoichiometry, affinity of protein–protein interactions,
e.g. the ligand–receptor interaction, the concentration of all components and their interactions collectively
influence the equilibrium of steady-state signalling. The intracellular signalling cascades often involve enzymatic
reactions, such as post-translational modifications, proteolytic cleavages or degradation of inhibitory compo-
nents via the proteasome [28] that occur at the second to minute time-scale. In most cases, this culminates in
the activation of transcription factors (TFs) that shuttle to the nucleus, where they directly or indirectly modu-
late gene expression. When labelling these TFs with fluorescent proteins, nuclear accumulation can be detected
within minutes after stimulating cells with a ligand [29,30]. In mice, the resulting gene expression, including
transcription, splicing, mRNA export and translation, leads to the generation of proteins within at least 20 min
in mice [31–33]. Thus, pathway stimulation can result in the appearance of new proteins within 25 to 30 min,
but can also take significantly longer.
When ligand stimulation ends, the whole signal transduction cascade is reset to baseline. While post-

translational modifications, e.g. protein phosphorylation, are reversible, protein cleavage and degradation
cannot be reversed, which has immediate implications for the dynamics of a pathway. For instance, the MAPK
(mitogen-activated protein kinase) pathway consists of a series of phosphorylation events. In many cell types,
the effector kinase MAPK shows pulsatile cycles of activation/ inactivation with a period of a few minutes [34].
In contrast, dynamics of other pathways building on, for instance, proteolytic cleavage of pathway components
take more time to reverse, since the active protein needs to be re-expressed.
Besides pathway inactivation by ligand–receptor dissociation or degradation, signalling activity of most path-

ways is actively modulated via feedback mechanisms. Negative feedback can result in the inactivation of the
pathway at various levels of the cascade. For instance, the binding of ligands to their receptor can trigger the
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endocytosis of the signalling complex, which is followed either by the recycling of the receptor or degradation
of the complex in the lysosome [35]. The extent of Wnt signalling in cells is regulated by receptor degradation
mediated by a network of E3 Ubiquitin ligases and regulatory factors [36]. In addition, the expression of nega-
tive regulators upon pathway stimulation can reverse post-translational modifications, block protein degradation

Figure 2. Processes influencing the timing of dynamics.

(A) Signalling is initiated when ligands interact with their receptors. Intracellular signalling can encompass various processes,

which ultimately lead to the activation of effector proteins. These effector proteins have diverse functions, often modulating

gene expression. Two potential signal transduction cascades and biochemical parameters that can influence the dynamics of a

signalling pathway are indicated in the scheme. On the left-hand side, an effector protein is activated by dissociation from an

inhibitory interaction partner. On the right-hand side, the effector protein is activated by phosphorylation. (B) A delayed

negative feedback system can induce oscillations, for instance, if the pathway induces the expression of a negative regulator.

Stable oscillations occur if parameters for activation and delayed inhibition are synchronized. (C) A positive feedback loop can

induce a sigmoidal cellular response or even bistability under the right conditions. In developmental biology, such networks

can guide cell fate transitions.

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY-NC-ND).4048

Biochemical Journal (2021) 478 4045–4070
https://doi.org/10.1042/BCJ20210043

D
ow

nloaded from
 http://portlandpress.com

/biochem
j/article-pdf/478/23/4045/925623/bcj-2021-0043c.pdf by guest on 10 July 2024

https://creativecommons.org/licenses/by-nc-nd/4.0/


or repress the expression of target genes of the pathway [37]. Negative feedback can result in adaptation, when
continued pathway stimulation results only in a minimal response or baseline activity [1]. If the parameters for
pathway activation and induced negative feedback are precisely coordinated regarding levels and timescales of
activation, delay and inactivation, oscillatory activity can be induced (Figure 2B) [1]. In addition, network
motifs containing positive feedback loops can, for instance, lead to bistability that controls developmental cell
fate decisions or cell cycle progression (Figure 2C) [38]. In reality, the regulatory networks are usually more
complex than this and can include both positive and negative feedback loops, which modulate signalling
activity in complex ways [1].
Since the study of dynamic processes in the context of a multicellular organism is technologically challen-

ging, our understanding of signalling dynamics in multicellular systems is limited, especially at the mechanistic
level. With new technologies to analyse, visualize and perturb signalling activity in cells and embryos, signalling
dynamics are found in more and more model systems and tissues, and their functions are being revealed. It
seems that signalling dynamics is a common characteristic of signalling processes and that there might be
general principles underlying the function of dynamic signalling in different tissues and organisms. Here, we
review the current knowledge of the role of signalling dynamics in embryonic development and aim to make a
conjunction with our understanding of the biochemical properties of the individual signalling pathways.
Although pathways such as hedgehog, TGFβ or Hippo signalling are equally important in embryonic develop-
ment, we will focus on Wnt, Notch and ERK signalling to highlight the complexities of dynamic signalling.

Notch signalling
Notch signalling is a highly conserved signalling pathway essential for embryonic development and the main-
tenance of adult tissues [39]. It mediates the communication between neighbouring cells by cell–cell contact.
The ligands Delta/Jagged/Serrate and the receptor Notch are transmembrane proteins, with the ligand being
expressed in signal-sending cells and the receptor in neighbouring signal-receiving cells (Figure 3A). Notch
activation requires several proteolytic cleavage steps that occur with specific kinetics and therefore influence the
kinetics of pathway activation. After translation, Notch is cleaved in the Golgi apparatus by a Furin protease
(S1 cleavage), which results in the formation of a heterodimer consisting of the Notch extracellular domain
(NECD) bound to a fragment containing a transmembrane domain and the Notch intracellular domain
(NICD) [40]. Upon interaction of the ligand with the NECD, an intracellular signal transduction cascade is
induced, whereby the Notch intracellular domain (NICD) is released by proteolytic cleavages and travels to the
nucleus [41]. These Notch cleavage steps require mechanical pulling forces exerted by the ligand on the recep-
tor, which opens a negative regulatory region (NRR) [42,43]. This allows proteolytic cleavage by ADAM metal-
loproteases (S2 cleavage) on the extracellular site [44]. This step releases the ligand-bound NECD and enables
the final cleavages: γ-Secretase (a multi-subunit complex consisting of Nicastrin, Presenilin, PEN2 and APH1)
exerts the S3 and S4 cleavages on the intracellular site, which releases NICD into the cytoplasm [45]. Due to
the mechanical forces required for Notch activation, it has so far not been possible to develop a soluble receptor
agonist for experimental activation of Notch signalling.
Within the nucleus, NICD interacts with the transcription factor CSL (CBF1/RBPJ, Su(H), Lag-1) and the

co-activator mastermind (MAM) as well as others to induce expression of Notch target genes [46–48]. Among
these are basic helix–loop–helix transcription factors of the Hes family, but also other genes controlling cellular
behaviour such as myc, Cyclin D or Nrarp [49–53]. Notch signalling is terminated by phosphorylation of
NICD in its PEST domain and degradation by the proteasome [54–56]. In contrast, the ligand-NECD complex
is endocytosed by the signal-sending cell [57]. The combination of nuclear translocation, affinity to the CSL
complex and the timing until phosphorylation for proteasomal degradation determines the lifetime of activated
NICD. In human cell lines, NICD has a half-life of 180 min [54]. This half-life is further modified by the preci-
sion of the final Notch cleavage that results in the release of NICD. Depending on the resulting N-terminal
amino acid, NICD half-life can vary in accordance with the N-end rule, which states that N-terminal amino
acids are recognized by ubiquitin ligases with different efficiencies to mark the protein for degradation [58,59].
Such processes modulate the dynamics of Notch signalling in a cell type- and state-dependent manner, which
should be taken into account when investigating the molecular mechanism of signalling dynamics.

Cis- and lateral inhibition
When the Notch receptor and ligands are expressed in the same cell, they interact in cis. Since such an inter-
action cannot generate the required pulling forces for Notch activation, signalling is essentially blocked, a
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Figure 3. Dynamics of Notch signalling. Part 1 of 2

(A) Notch is generated in the endoplasmic reticulum and travels to the plasma membrane via the Golgi apparatus. In the Golgi,

the first proteolytic cleavage is mediated by Furin, which leads to the formation of a Notch heterodimer. There, Notch binding

affinities can be modulated by post-translational modifications, e.g. glycosylation by Fringe. When the ligand from a
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process termed cis inhibition [60,61]. Thus, within a tissue, Notch signalling is active, if ligand and receptor are
expressed in different ratios or if ligand and receptor are spatially separated within a cell [62,63]. This auto-
regulatory mechanism, in combination with the fact that Notch ligands themselves are downstream targets of
the pathway, can result in lateral inhibition by which neighbouring cells induce each other to express either the
ligand or the receptor and thereby assume different cell identities [64–66]. This way, a multicellular tissue can
self-organize into a highly ordered structure with alternating, equally spaced cell types. For instance, a combin-
ation of cis inhibition and lateral inhibition allows the formation of regularly spaced sensory hairs in separate
lines along the back of the fly [67]. In the mammalian gut epithelium, lateral inhibition coordinates the regular
spacing of secretory and non-secretory cells along the gut lining. Secretory cells express Notch ligands, which
block their neighbours to adopt the same cell fate [68,69]

Cellular Notch signalling oscillations
Several Notch target genes function as negative regulators of the pathway [50]. Prominent among these are
members of the Hes transcription factor family, which can function as transcriptional repressors of their own
expression as well as other genes [70,71]. Another negative regulator is Nrarp (Notch regulated ankyrin repeat
protein), a Notch signalling target in Xenopus embryos [72]. It interacts with the NICD-CSL complex and
induces its dissociation, resulting in NICD degradation via the proteasome [50]. Such delayed negative feedback
loops induce oscillations of Notch target genes. Indeed, Hes oscillations have been observed in various tissue
types, such as embryonic stem cells, neural stem cells and the developing pancreas (Figure 2B) [3,5,73]. In
neural stem cells of the developing mouse brain, oscillatory expression of Hes1 and several pro-neural genes
such as Ascl1 controls the balance between proliferation and differentiation [5,74]. When pro-neural genes are
stabilized and Hes genes down-regulated, neural differentiation is initiated (Figure 3B). Similar oscillation
dynamics of Hes5 have been observed in the developing spinal cord [75,76]. To test the functional significance
of Hes dynamics in regulating cell behaviour, Imayoshi et al. generated an optogenetic system to modulate
Ascl1 expression in cells by light pulses [4,77]. When oscillations of Ascl1 were induced in neural stem cells,
cells proliferated and did not differentiate [4]. Conversely, sustained Ascl1 expression resulted in neuronal dif-
ferentiation. This work highlights the importance of signalling oscillations in controlling the balance between
proliferation and differentiation in stem cells; however, the molecular decoding mechanism remains to be
investigated.

Spatiotemporal Notch dynamics
Owing to the intrinsic propensity of Notch signalling to oscillate, the fact that expression of both ligand and
receptor is induced by the pathway itself as well as its paracrine nature, Notch signalling can generate tissue-
wide oscillation or wave dynamics. One example is the periodic formation of segments or somites during verte-
brate development, a process termed somitogenesis. Somites are transient embryonic structures and precursors
of vertebrae, muscles and dermis [78]. Periodic segmentation of the growing tissue is regulated by signalling
oscillations in Notch, Wnt and FGF signalling in the unsegmented tissue, the presomitic mesoderm (PSM)
[19]. The network of oscillating signalling pathways is termed the segmentation clock. Each cell is thought to be
an autonomous oscillator [79–81], but cell-to-cell communication via Notch signalling synchronizes neighbour-
ing cells (Figure 3C) [82–84]. This way, kinematic waves of signalling activity are observed in tissues travelling

Figure 3. Dynamics of Notch signalling. Part 2 of 2

neighbouring cell interacts with Notch, a mechanical pulling force results in a conformational change in Notch. This allows the

proteolytic cleavage of Notch by ADAM and then γ-Secretase, which finally releases NICD (Notch intracellular domain) into the

cytoplasm. In the nucleus, NICD interacts with the transcription factor CSL and the co-activator Mam to induce the expression

of Notch target genes. Among these are Hes genes, which initiate a delayed negative feedback loop, as well as Fringe and

Nrarp, which both feed back onto Notch signalling. Finally, NICD is phosphorylated and degraded by the proteasome. (B) Due

to the negative feedback loop of Hes proteins, Hes expression oscillates in many systems. In neural stem cells of the

developing brain Hes1 oscillates alternatingly with pro-neural genes. When Hes1 oscillations cease and pro-neural proteins get

stabilized, cells differentiate. (C) Neighbouring cells can couple via Notch signalling and synchronize their intracellular

oscillations, for instance during periodic segmentation of vertebrate embryos. This is thought to be achieved by reciprocal

activation of Notch signalling in neighbouring cells and induction of the ligand Dll1.
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from the posterior tip of the tail to the side of segment formation. Since the segmentation clock also induces
the expression of the Notch ligand Dll1, a model has been proposed in which oscillatory expression of Dll1
drives Notch oscillations and mediates cell–cell communication to form waves of Notch activity travelling
through the segmenting tissue (Figure 3C, also see Figure 4B) [85]. In fact, Notch signalling seems to be central
to generating these oscillations. Oscillations of the downstream target Hes7 have been detected in various
model organisms such as zebrafish, mouse and human cells [84,86–89]. When the timing of Hes7 transcription
was altered by the removal of several introns (see Figure 2), the oscillation period and, consequently, the timing
of segmentation were shortened [90]. Interestingly, shortening gene expression timing resulted in damped oscil-
lations, highlighting that the right parameters of the delayed negative feedback loop are essential for stable
oscillations (Figure 2A,B). Another set of experiments underscoring the role of Notch signalling for oscillations
was performed by Soza-Ried et al. who induced periodic overexpression of the ligand DeltaC in zebrafish,
which could control segmentation oscillations [91].

Specificity in information transmission
Mammalian genomes encode for 4 Notch isoforms (Notch1 to Notch4) and 5 Notch ligands ( Jagged1 ( Jag1),
Jag2, Delta-like 1 (DLL1), DLL3 and DLL4). However, even if cells express the same Notch receptors, different
intracellular dynamics and effects can be activated. How different ligands induce different intracellular dynam-
ics and result in different downstream effects is still a matter of investigation. One potential explanation comes
from structural and biochemical analyses revealing that different Notch ligands bind their receptors with differ-
ent affinities. For instance, DLL4 binds Notch 1 with a higher affinity than DLL1 [3,92–95]. In agreement with
this, DLL4 has recently been found to induce sustained Notch activation, which results in expression of the
downstream target Hey1, while Dll1 induces Notch pulses and expression of Hes1. It has been suggested that
ligand–receptor clustering in the case of Dll4 results in sustained activation, which explains how ligand identity
can be encoded in the dynamics of Notch signalling [96].
Ligand–receptor affinity is further fine-tuned by post-translational modifications such as glycosylation of the

Notch receptors by several enzymes, including Fringe, POFUT1, POGLUT1 or EOGT1 [97–99]. Local modifi-
cations of Notch receptors in Drosophila embryos ensures spatiotemporal specificity of Notch signalling
[97,98]. Interestingly, in mammalian cells, Lunatic Fringe (Lfng) is one of the cyclic genes whose expression is
periodically induced during vertebrate segmentation [100,101]. Considering that the Notch receptor pool has to
be replenished continuously to maintain Notch signalling, oscillatory expression of the glycosylating enzymes
might further amplify signalling activity and thereby enhance the oscillation amplitude. It has been shown
recently that Hes7 oscillations downstream of Notch signalling do not depend on the presence of Lfng. In con-
trast, Lfng is essential for coupling between cells, highlighting the importance for glycosylation for proper inter-
cellular signalling [102].
How specific dynamics are decoded to induce a precise, cell type-specific effect is not understood. The archi-

tecture and affinity of CSL binding sites and the recruitment of other regulatory proteins seem to play a role,
which is discussed in detail elsewhere [41]. In vitro systems, such as periodic induction of ligand expression
[91] or the synthetic Notch system syn-Notch [103], allow defined external activation of Notch signalling to
analyze the encoding and decoding process in detail.

Wnt signalling
The Wnt signalling pathway is an evolutionarily conserved signalling pathway essential for stem cell renewal,
cell proliferation and cell differentiation during embryogenesis and adult tissue regeneration and repair.
Deregulated Wnt signalling is implicated in various diseases, including cancer, developmental disorders, and
degenerative diseases [104–106]. Multiple, functionally distinct Wnt signal transduction pathways have been
identified [107]. Here, we will focus on the Wnt/β-catenin-dependent pathway, the canonical Wnt pathway,
that regulates context-specific gene expression programs (Figure 4A).
The transcriptional co-activator β-catenin is a master regulator of this transduction pathway and is constantly

synthesized. In the absence of Wnt ligands, it is rapidly degraded by ubiquitin-dependent proteasomal degrad-
ation [108]. This process is initiated by the β-catenin destruction complex, a multiprotein complex composed
of the scaffold proteins adenomatous polyposis coli (APC) and Axin1 [109–112] the protein kinases casein
kinase 1 (CK1) and glycogen synthase kinase-3 (GSK3), which phosphorylate β-catenin on key serines/threo-
nines [113–115]. The phosphorylated motif is a docking site for the β-TrCP-containing E3 ubiquitin ligase that
mediates ubiquitination and subsequent proteasomal degradation [116–118]. Wnt binding to the cell surface
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Figure 4. Dynamics of Wnt signalling. Part 1 of 2

(A) Wnts are secreted proteins that are lipidated in the ER by Porcupine. Wntless/ Evi regulates Wnt secretion. In the
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receptors Frizzled (Fzd) and co-receptor low-density lipoprotein receptor-related protein 5 (LRP5) or LRP6
triggers the recruitment of Dishevelled (Dvl) to the intracellular regions of Fzd [119–121], and of the
Axin-GSK3 complex to the C-terminal tail of LRP5/6, promoting its phosphorylation by GSK3 [122,123]. This
results in the inhibition of the β-catenin destruction complex, and the accumulation of hypo-phosphorylated
β-catenin in the cytoplasm and the nucleus [124,125]. In the nucleus, β-catenin functions as a co-activator for
transcription factors of the TCF/LEF family and modifies the expression of Wnt target genes [126–128],
thereby leading to changes in key cellular processes including cell proliferation, cell fate determination and
migration depending on cell type and cell state. Besides its function in Wnt signalling, β-catenin stably localizes
to the plasma membrane as a component of adherens junctions [129]. The relevance of this β-catenin pool for
signalling and the dynamics between the different pools is still controversial and might be context-dependent
[130,131].
While the Wnt/β-catenin pathway and the molecular interactions of signalling components are extensively

studied, only a few studies investigate the dynamics of Wnt signalling and how cells receive, process, and inter-
pret different features of extracellular ligands, such as molecular identity, concentration, and combinations with
other ligands to control specific cellular behaviour. However, many of the ‘communication codes’ identified in
other signalling pathways could also be critical determinants for Wnt/β-catenin signalling dynamics and cell
fate decisions.

Wnt gradient
Wnts are post-translationally lipidated by the O-acyl transferase porcupine in the ER [132,133] and further
shuttled through the Golgi to the plasma membrane by the escort protein Wntless/Evi [134–136] (Figure 4A).
After secretion, lipidation is essential for Wnt binding to the Fzd receptor [137] and to limit diffusion in the
extracellular environment [132]. As outlined above, the Wnt gradient is critical for coordinated spatial and
temporal activity (Figure 4B), but the molecular mechanism of gradient formation remains the subject of many
ongoing studies. The current notion suggests that Wnts ‘travel’ away from the secreting cells when incorporated
into particles, vesicles or exosomes [138,139] or bound to receptors, i.e. Fzd and Rnf43/Znrf3 through direct
cell contact and cell division [140]. Furthermore, in many systems, the Wnt gradient appears to be fine-tuned
by negative feedback mechanisms or counteracting gradients of Wnt antagonists. For instance, in the mouse
embryo at gastrulation, the expression of Wnt3 in the posterior region opposes the expression of the antagonist
dickkopf 1 (Dkk1) to control head morphogenesis [141].

Feedback mechanisms
Wnt pathway activity is carefully controlled in healthy cells by antagonists and potentiators, as well as positive
and negative feedback loops that enhance, augment, dampen or terminate Wnt signalling (Figure 4A). The
interactions of Wnts with its receptors are negatively regulated by numerous proteins, including Dkk1-4 [142–144],
sclerostin/SOST [145], the Wnt inhibitory factor WIF [146] and Notum [147,148], several being Wnt target
genes themselves (Figure 4A). In contrast with Axin1, Axin2 is a universal Wnt target gene, and increased Wnt

Figure 4. Dynamics of Wnt signalling. Part 2 of 2

signal-receiving cell, many Wnt ligands induce the β-catenin-dependent signalling cascade. In the absence of Wnt, β-catenin is

constantly phosphorylated by the destruction complex and marked for degradation by the proteasome. When Wnt binds to its

receptor Fzd and the co-receptor LRP5/6, Dvl and the destruction complex are recruited to the plasma membrane. This

prevents phosphorylation and degradation of β-catenin, which results in the accumulation of hypo-phosphorylated β-catenin in

the cytoplasm. β-Catenin travels to the nucleus to modulate gene expression by interacting with the transcription factor TCF/

LEF. Several Wnt target genes function as negative regulators of the pathway, such as Axin2, Dkk and Rnf43/Znrf3. Rnf43/

Znrf3 marks Fzd for proteasomal degradation. When RSPO binds to Lgr, this complex recruits and inhibits Rnf43/Znrf3. This

double-negative regulation amplifies Wnt signalling activity. (B) Periodic segmentation of mammalian embryos or

somitogenesis is regulated by oscillations of Wnt, Notch and Fgf signalling. Coupling between cells via Notch signalling leads

to the formation of signalling waves (in orange) travelling from the posterior tip to the anterior side of the presomitic mesoderm

(PSM), where segment formation is induced. In addition to signalling waves, the tissue is organized by antagonistic gradients

of Wnt/Fgf and retinoic acid (RA). (C) In mouse somitogenesis, Wnt and Notch signalling oscillations are coupled and have

different dynamics in the segmenting tissue: In the posterior, Wnt and Notch signalling oscillate out-of-phase, in the anterior

they oscillate in phase. This change in phase-relationship is essential for proper segmentation.
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signalling enhances destruction complex formation and β-catenin degradation, thereby suppressing
β-catenin-mediated gene expression [12,149,150]. Furthermore, Rnf43 and Znrf3 are Wnt target genes and
transmembrane E3-ubiquitin-protein ligases that mediate Fzd degradation [151,152], leading to reduced Fzd
cell surface density and decreased sensitivity of cells to Wnt ligands. This results in the attenuation or termin-
ation of the Wnt signal necessary for many biological processes. For instance, Znrf3 knockout mouse embryos
die around birth and show a lack of lens development as a most obvious phenotype [151]. Conversely, Wnts
also trigger the expression of leucine-rich repeat-containing G protein-coupled receptor family 5 (Lgr5) [152].
R-spondin ligands (RSPO) are expressed in many stem cell niches and engage Lgr4-6 and Rnf43/Znrf3, thereby
triggering endocytosis of the ternary complex and blocking Rnf43/Znrf3-mediated Fzd degradation [151–153]
(Figure 4A). This leads to a higher sensitivity of cells to Wnt ligand, markedly increased Wnt/β-catenin signal-
ling levels and, in the small intestine, to the activation of the transcriptional programs required for stem cell
proliferation and self-renewal [154].

Combinatorial use of Wnt ligands and receptors
Many developmental signalling pathways have evolved multiple ligand and receptor variants that interact pro-
miscuously, and the Wnt pathway is no exception. The human genome encodes 19 Wnts, 10 Fzds, and two
LRP5/6 co-receptors. Although loss-of-function of most Wnts result in characteristic phenotypes (http://web.
stanford.edu/group/nusselab/cgi-bin/Wnt/), observations suggest that these are related to the localized expres-
sion, rather than intrinsic activities of different Wnt subtypes. It is generally accepted that Wnts/Fzds are
highly cross-reactive. Biochemical and functional approaches that characterize interacting Wnt — Fzd pairs
[155,156] have revealed broad Wnt — Fzd cross-reactivity, with some Wnts having broader specificity than
others. Consistent with the broad Fzd specificity, Wnt3a is pleiotropic and can exert a broad range of biological
activities, such as supporting the growth of organoids from many different epithelial tissues [157], exceeding
what could be expected based on the Wnt3a expression profile. Nevertheless, it can be expected that the differ-
ent Wnts are not functionally equivalent, meaning that their signalling outputs have different characteristics.
This notion is supported by the observation that different Wnt subtypes synergistically activate Wnt/β-catenin
signalling in multiple cell types [158].
Furthermore, biophysical parameters including stability, geometry and stoichiometry of the Wnt/Fzd/LRP5/6

signalling complex are likely to infer signalling dynamics. Despite some progress in recent years [137,159–162]
studies to exploit ligand/receptor-induced Wnt signalling dynamics remain challenging owing to the complex
nature of the receptors and the Wnts. To overcome these difficulties, several laboratories have developed Wnt
mimetics, consisting of non-lipidated Fzd–LRP5/6 ‘heterodimerizers’ that are structurally distinct from natural
Wnts but recapitulate their activities with a tuneable activity [137,159,160,163,164]. Furthermore, ESCs and
adult neural stem cells with light-inducible Wnt signalling have been generated by expressing the cytoplasmic
tail of LRP6 fused to the blue-light photoreceptor Cryptochrome 2, allowing to probe the effect of dynamic
Wnt signalling activation [165,166].
In contrast, the relevance of receptor abundance for tuning Wnt signalling dynamics is better established.

RSPO ligands strongly potentiate Wnt signalling by inhibiting the Rnf43/Znrf3-mediated proteasomal degrad-
ation of Fzd, leading to increased receptor abundance on the surface of Wnt receiving cells [151,152]. Recently,
it has been demonstrated that Wnts and RSPOs exert differential activities in the intestinal crypt stem-cell
niche. While Wnts confer a basal competence of stem cells for Wnt signalling by maintaining the expression of
Lgr5, RSPOs support the expansion of stem cells [154]. Hence, it would be interesting to elucidate the differen-
tial functions of Wnts and RSPOs and their association with diverse signalling dynamics in other systems and
models. Besides attenuating or potentiating Wnt signalling, some co-receptors have been found to be required
for correct Wnt signalling initiation. For instance, RECK is a selective Wnt7 receptor that, together with
GPR124, is required for transducing a Wnt/β-catenin signalling to control embryogenic CNS angiogenesis and
blood-brain barrier formation [167,168].

Fold change detection
Intracellularly, β-catenin is the master effector of the Wnt pathway critically involved in regulating gene expres-
sion in response to Wnt stimulation. A first mathematical model describing the functioning of the Wnt/
β-catenin pathway in time and space was developed by Kirschner, Heinrich, and colleagues and is based on
measurements with Xenopus oocyte extracts, and the molecular reactions of the pathways’ core effectors includ-
ing Axin, APC, and β-catenin [169]. This model was subsequently modified regarding signalling characteristics,
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refined interactions, functional diversity, compartmentalization and nuclear shuttling of β-catenin, and negative
feedback loops [12,169–172]. An important observation was that the fold-change rather than a linear increase
in β-catenin is the critical determinant read out by the downstream transcriptional system. While the absolute
β-catenin levels induced by Wnt stimulation are very sensitive to relatively small, stochastic pathway perturba-
tions, a fold-change is robustly buffered. Having the output of Wnt signalling sensed in fold-change allows the
cells to detect ligand levels while cancelling out fluctuating noise. It requires that at least some Wnt target
genes perceive fold-changes, rather than absolute levels, of β-catenin, giving rise to adaptive responses.
Detection of the fold change may be accomplished by an incoherent feedforward loop of gene regulation
[12,173]. This suggests that Wnt signalling, at least in the absence of Lgr5/RSPO contribution, is optimized for
controlling transient events, such as cell fate decisions, rather than continuously transmitting information
about extracellular ligand levels.

Adaption
A series of studies used quantitative microscopy to interrogate the dynamics of fluorescently labelled endogen-
ous β-catenin, or β-catenin expressed at near endogenous levels, in response to Wnt signal activation and inhib-
ition [174,175]. Stimulation of HEK293 cells with Wnt3a led to an increase in the total amount of β-catenin.
However, the increase was initially faster in the nucleus than in the cytoplasm, resulting in a higher nucleus/
cytoplasm protein ratio. The shuttling of β-catenin to the nucleus appears to be mediated by active transport
alongside passive diffusion. While the dynamics of ß-catenin nuclear build-up, i.e. rates, levels, wave profile,
varied substantially between individual cells, the total levels of accumulated β-catenin were similar in most
cells, suggesting that the balance between accumulation and degradation affects the extent of β-catenin accumu-
lation in individual cells. The expression kinetics of the Wnt target gene cyclin D paralleled the kinetics of the
initial phase of β-catenin nuclear accumulation. Rate of change, and not actual protein levels, of nuclear
β-catenin correlated with the transcription of cyclin D1 mRNA, especially during the early phase of Wnt stimu-
lation [174].
However, β-catenin dynamics appear to be related to cell type, context, and fate. For instance, stimulation of

hESCs with exogenous Wnt, resulted in an adaptive β-catenin response. β-catenin accumulated rapidly in both
the nucleus and the cytoplasm but started to decline in the nucleus after four hours [176]. The level of adapta-
tion depended on the concentration of the Wnt signal, being complete at a low dose of Wnt3a and partial at
saturating concentration of Wnt3a. In contrast, the small-molecule GSK3ß inhibitor CHIR99021, commonly
used as a Wnt substitute, induced a nonadaptive dose-dependent increase in nuclear β-catenin, indicating the
mechanism that controls adaptation in hESCs is upstream of GSK3β. Interestingly, Wnt target genes showed
various response profiles. While some genes were transiently activated in response to Wnt3a, others were sus-
tained, further adding to the complexity of Wnt signalling dynamics and questions to address.

Wnt signalling oscillations
Besides fold-change detection and adaption, Wnt signalling can display complex oscillatory dynamics. The
main example is the segmentation of mouse embryos, which is controlled by oscillatory pathway activity (see
above, Figure 4B). The first cyclic genes identified in chicken, mouse and zebrafish embryos were downstream
targets of Notch signalling [88,100] (Holley et al. 2000; Palmeirim et al. 1997). To identify other oscillatory
genes and pathways, a transcriptomic screen was performed, in which one half of the PSM was used for tran-
scriptome analysis [177]. The other half was stained for the cyclic gene Lfng, which allowed the authors to put
the transcriptomic samples into temporal order based on the Lfng staining pattern. This revealed Wnt signal-
ling as a new oscillatory component of the segmentation clock. Subsequently, staining of nascent Axin2 mRNA
as downstream target of Wnt signalling and the quantification of dynamic Wnt signalling reporters confirmed
oscillatory Wnt activity in models of mouse and human somitogenesis [87,178,179]. The regulatory network
inducing Wnt signalling oscillations is not understood in detail. Modelling of the Wnt signalling network indi-
cated that a delayed negative feedback loop via the negative regulator Axin2 could account for the oscillations
[180,181]. However, other negative regulators such as Dkk are induced likewise (Figure 4A) and their function
should be tested experimentally.
The cross-talk between and hierarchy of Wnt and Notch signalling in somitogenesis has been investigated

and has remained inconclusive [178,182–185]. This stems in part from the presence of a Wnt signalling gradi-
ent in the tissue that adds to the complexity and makes the experimental dissection difficult [178,182]. When
knocking out the transcriptional repressor Hes7, Notch signalling oscillations were not detected anymore,
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indicating Hes7 as part of the oscillatory mechanism [90,184]. In contrast, Wnt signalling oscillations persisted
in Hes7 knockout mice. To analyse a potential coupling between Wnt and Notch signalling oscillations, a
microfluidic system was applied that allows the subtle modulation of signalling oscillations in segmenting tissue
[179,186]. This showed that Wnt signalling oscillations followed, when Notch signalling oscillations were
entrained, and vice versa, implying that Wnt and Notch signalling oscillations are indeed coupled (Figure 4C)
[179]. Interestingly, Wnt and Notch signalling oscillations change phase-relationship from out-of-phase in the
posterior tissue to in-phase in the anterior part of the PSM, where segments form [177–179]. When changing
this phase relationship using microfluidics, segment formation was impaired, which highlights that phase shift
carries critical information for somitogenesis (Figure 4C). How this phase-shift changes and how it controls
segment formation is not understood. Furthermore, whether and how Wnt signalling oscillations regulate the
development of other tissues has to be investigated in future studies.

MAPK signalling
One of the main signal transduction pathways activated by growth factors is MAPK signalling. Growth factors
such as EGF or FGF are soluble ligands that bind to receptor tyrosine kinases (RTKs) to mediate diverse func-
tions within organisms, e.g. cell proliferation, survival or modification of cell metabolism [187,188]. Upon
ligand–receptor interaction and receptor dimerization, the intracellular RTK kinase domain is activated and
several tyrosine residues of the intracellular domain are phosphorylated in trans (Figure 5A) [189–191].
Phosphorylated tyrosines serve as docking sites for the recruitment of Shc, Grb2 and Sos [192]. Sos functions
as a guanine nucleotide exchange factor to activate the small G protein Ras by exchanging GDP with GTP
[192,193]. Ras-GTP then initiates a kinase cascade by activating the kinase Raf. Raf (a MAPK kinase kinase)
phosphorylates and thereby activates the kinase MEK (a MAPK kinase), which in turn activates ERK (a
MAPK) by phosphorylation. ERK as effector kinase of the pathway phosphorylates diverse proteins within the
cell to change cellular behaviour. It also travels to the nucleus to mediate gene expression of target genes by
phosphorylating transcription factors [188]. The activation process of Raf and its dynamics are modulated by
the combinatorial usage of ligands and receptors, post-translational modifications, subcellular localization and
endocytosis of the receptor complex, all of which is dependent on cell type and developmental stage, discussed
in detail elsewhere [187,188]. Here we focus on the kinase cascade itself and its implications for signalling
dynamics.

Scaffold proteins in ERK signalling
Mechanistic details of Erk signalling have been studied extensively in human cell lines and in vitro. One regula-
tory component of MAPK signalling is the use of scaffold proteins, which consist of modular interaction
domains that coordinate the three kinases of the MAPK cascade (Figure 5B) [194,195]. This has several conse-
quences for ERK signalling: (1) By recruiting the kinases to the plasma membrane, in the vicinity to the activa-
tor Ras, the phosphorylation cascade can be activated efficiently. Furthermore, the cascade itself gets more
specific and more efficient by bringing the right proteins in close proximity, as long as the ratio between scaf-
fold and kinases is not too high. For instance, the scaffold protein KSR (kinase suppressor of Ras) binds Raf,
MEK and ERK, all components of the ERK activation cascade [195]. Despite these advantages for cells, too
stable interactions might limit the amplification of the MAPK cascade. (2) The scaffold has an allosteric effect
on the phosphorylation process, for instance, on Raf kinase activation [196]. In addition, in a ternary complex
consisting of KSR, B-Raf and MEK1 a conformational change in MEK1 promotes phosphorylation by a second
B-Raf molecule [197]. (3) Scaffold proteins influence feedback mechanisms of the signalling pathway. For
instance, when ERK bound to KSR gets activated, ERK phosphorylates both KSR and Raf, which induces the
dissociation of KSR and Raf thereby inhibiting further amplification of the signal within short timeframes
[198]. How scaffold proteins contribute to ERK signalling dynamics is not known. It is however conceivable
that such proteins modulate the parameters of dynamics, such as timing, amplitude and duration dependent on
the cell type and developmental stage. Their expression and dynamics should therefore be studied in the cellu-
lar context of ERK signalling dynamics.

ERK signalling dynamics
ERK signalling is driven and regulated by post-translational modifications. Not only phosphorylation, but also
others such as ubiquitination, modify activity and stability of the involved proteins [199,200]. These modifica-
tions are largely reversible, since both modifying and reversing enzymes are expressed in the same cells, giving
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Figure 5. Erk signalling dynamics. Part 1 of 2

(A) When EGF interacts with a dimer of its receptor EGFR, a conformational change is induced, which results in the activation

of the intracellular kinase domain. Phosphorylation in trans allows the recruitment of the adaptor Grb2 and the GEF Sos. Sos

promotes the exchange of GDP with GTP in the small G protein Ras, which then activates the kinase Raf. Raf then

phosphorylates and activates the kinase Mek, which in turn phosphorylates and activates the effector kinase Erk. Erk

phosphorylates various cytoplasmic proteins and travels to the nucleus to activate the expression of target genes. Among

these are the negative regulators Sprouty and the phosphatase Dusp. (B) Erk signalling is modulated by scaffold proteins,
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rise to complex signalling dynamics. In addition, the expression of activating and inactivating enzymes is
induced by the ERK pathway, which generates positive and negative feedback loops [201]. Dynamics in ERK
signalling have first been described in the PC12 cell line, in which both growth factors EGF and NGF activate
ERK signalling, but with different dynamics and lead to different cellular outcomes, i.e. cell proliferation or dif-
ferentiation, respectively (see above, Figure 1B) [17,202]. Using an optogenetic tool, Toettcher et al. induced
ERK signalling by light with different dynamics, which confirmed that sustained signalling resulted in neuronal
differentiation [203]. It has been suggested that EGF and NGF activate different signalling network topologies,
thereby leading to different dynamics: EGF binds to the EGF receptor EGFR, while NGF binds to TrkA
(Tropomyosine receptor kinase A). This way, EGF mainly induces a negative feedback loop. NGF induces a
positive feedback loop via additional activation of PKC (protein kinase C), leading to sustained ERK signalling
[204,205]. In fact, single-cell analyses indicated that the relationship between activated ERK and PKB (protein
kinase B)/AKT determines cellular outcome [206–208].

ERK activity pulses
Over the last decade, several highly versatile ERK activity reporters have been generated that are based on the
phosphorylation of fluorescent reporter constructs, which mediate a change in Foerster resonance energy trans-
fer (FRET) or subcellular localization [209–211]. Such reporters have allowed the identification of ERK dynam-
ics in various organisms and tissue types within their multicellular context. It turns out that ERK signalling is
often pulsatile within a range of several minutes, presumably owing to the periodic phosphorylation and depho-
sphorylation dynamics (Figure 5C) [212]. In skin cells the period of ERK pulses varied between ∼30 min and
1.5 h in both mice and human cells, which was dependent on cell type and cultivation time [212]. The gener-
ation of pulses was dependent on the dual specificity phosphatases (DUSP) Dusp6 and Dusp10 [212]. A screen
using more than 400 kinase inhibitors indicated the complex network and crosstalk between different signalling
pathways influencing ERK dynamics [203,213]. Pulsatile ERK activity correlates with cell proliferation in skin
cells [212]. In the context of blocked endogenous EGF signalling with an EGFR inhibitor, induced ERK pulses
using optogenetics could recapitulate this proliferative effect [213]. Since continuous activation of ERK activity
had a similar effect, it has to be investigated in future studies whether the dynamics or the cumulative activity
of ERK determine cellular behaviour. Indeed, similar optogenetic modulation of ERK activity in Drosophila
embryos showed that the cumulative dose of ERK activity defines the induced cell fate [214,215]. Moreover, in
a two-dimensional layer of the canine kidney cell line MDCK, a wave of ERK activity is initiated around apop-
totic cells, which promotes survival of surrounding cells, a phenomenon also found in Drosophila [216,217].
Optogenetic induction of ERK activity pulses showed that pulses with a period of at least 3–4 h could prevent
apoptosis [217], which indicates that maintaining the cellular effect of ERK constantly at a sufficiently high
level has a pro-survival effect. Similar ERK dynamics have been detected in other tissues such as intestinal
organoids and lung cells [209,218,219], indicating that this might be a common phenomenon in epithelial
tissue. The functional significance for embryonic development and tissue maintenance as well as the decoding
mechanism have to be investigated in future studies.

ERK signalling oscillations
The periodic segmentation of mouse embryos is mediated by a network of oscillatory Wnt, Notch and FGF sig-
nalling (see above, Figure 4B,C). Several downstream targets of FGF/ERK signalling have been shown to be
oscillatory with a period of 2.5 h in mice and 5 h in humans [87,177]. Periodic absence of FGF signalling in
the region of segmentation with the concomitant presence of Notch activity allows the formation of a new
somite [183]. Using a luciferase reporter based on the downstream target DUSP4, signalling waves of FGF sig-
nalling in the developing mouse embryo were observed [183]. In contrast, the dynamics of ERK activity itself
have not been quantified using live reporters yet. However, oscillations of phosphorylated ERK (P-ERK) were

Figure 5. Erk signalling dynamics. Part 2 of 2

which make the kinase cascade more specific and efficient. In addition, feedback mechanisms involving the scaffold protein

regulate the cascade further. For instance, the activated effector kinase phosphorylates and both the scaffold protein and Raf,

which results in dissociation of the two proteins. (C) Erk activity pulses have been observed in various tissue types ranging

from ∼15 to 90 min in period. In these tissues, pulses induce cell proliferation and promote cell survival.
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detected by immunohistochemistry [183]. In the future, it will be important to analyse ERK dynamics within
single cells at high temporal resolution using dynamic ERK activity reporters to determine whether ERK activ-
ity is also pulsatile in the segmenting embryo. This will allow the investigation of how ERK dynamics are trans-
lated into an oscillatory expression of ERK target genes.

Species-specific differences in signalling dynamics
Even though embryonic development of different mammalian organisms is strikingly similar in its molecular
processes, developmental time greatly differs between species [220]. In two recent studies, this has been attribu-
ted to differences in biochemical parameters of the molecular processes and signalling events [33,221].
Pluripotent stem cells (PSCs) were either differentiated along neuromesodermal progenitors towards neural
tube cells [221] or along oscillating PSM towards somitic cells [33]. In vitro formation of oscillating PSM cells
confirmed previous findings that mouse cells oscillate with a period of ∼2.5 h, while in human cells the period
is ∼5 h (Figure 6A) [33,80,84,87,222]. By swapping the human and mouse version of the cyclic gene Hes7, it
was ruled out that the difference lay in the gene locus. In contrast, it turned out that several biochemical para-
meters of the delayed negative feedback loop generating oscillations differed (Figure 6B). Transcription, splicing
and translation as well as protein degradation take approximately double the amount of time in human com-
pared with mouse cells [33]. Equivalent differences in protein stability were found when differentiating PSCs
towards neural tube cells [221]. The cause of this divergence in the timing of cellular processes remains elusive.

Figure 6. Species-specific differences in the timing of dynamics.

(A) Oscillations of the segmentation clock have a period of ∼5 h in humans and 2.5 h in mice. (B) Segmentation clock

oscillations are thought to be generated by a delayed negative feedback loop, involving the induction of the expression of a

negative regulator. It has been shown that the timing of expression (transcription, splicing and translation) and protein

degradation take 2× longer in humans than in mice.
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The question of whether all biochemical reactions are equally changed — or only a subset of processes — will
have direct implications on signalling dynamics in the different model organisms. For instance, ERK dynamics
are mediated by periodic post-translational modifications on the one hand and gene expression of negative reg-
ulators on the other hand. A direct comparison of ERK dynamics can be performed by quantifying equivalent
reporters for both ERK activity [209,211] and target gene expression [183] in equivalent mouse and human
cells.

Perspective
Signalling pathways are intrinsically dynamic. Such dynamics have diverse functions in organisms, ranging
from the control of cell proliferation and differentiation to the coordination of periodic events during embry-
onic development. Here, we have discussed the relevance and mechanisms of dynamics in Notch, Wnt and
MAPK signalling. Other signalling pathways are equally important in embryonic development and dynamics
have been detected in various contexts [10,223,224]. This indicates that signalling dynamics might be a
common characteristic of cellular signalling.
Oscillatory signalling activity occurs in various pathways, model systems and tissue types. These oscillations

seem to maintain cells in an undifferentiated and proliferative state. This suggests that signalling oscillations
might keep cells in an undecided, but responsive state and allows cells to quickly adapt to changes. Only upon
sustained expression of transcription factors, differentiation seems to be initiated. Some questions that emerge
from this are the following: Are Erk pulses a general property of epithelial cells to control proliferation? How
do dynamics change in the process of epithelial-to-mesenchymal transition and vice versa? How do tumori-
genic mutations affect these dynamics [218,219]? During embryogenesis periodic segmentation is a common
process often occurring in both vertebrates and invertebrates. Dynamic and oscillatory activity are found in
several other segmenting species, the best-studied invertebrate being the beetle Tribolium [225–227]. Whether
the mechanism of tissue-wide communication and induction of segments are similar remains to be
determined.
With new technological developments, the mechanistic investigation of the role of signalling dynamics

becomes amenable. (1) In vitro models of embryonic development and adult tissue homeostasis, including stem
cell-based embryo-like structures and organoid models, that can be generated in high numbers, enable the
study of signalling dynamics in accessible and simplified systems [228,229]. (2) Signalling reporters allow the
spatiotemporally resolved quantification of signalling dynamics. Due to the functionally critical cellular hetero-
geneity within tissues and organisms, it is essential to analyse signalling within single cells. Signalling reporters
either report on the transduction cascade itself, e.g. nuclear translocation or change in abundance of the
effector protein [203], or are based on the expression of target genes [179]. To get a more comprehensive
understanding of the signalling complexity, the different components of a pathway should be analysed in the
same model system. This will allow the analysis of ligand–receptor interaction, the signal transduction cascade,
cellular effects, target gene expression and feedback loops. For visualizing newly generated proteins, fast matur-
ing fluorescent proteins or tagging systems should be used that are not dependent on fluorescent protein mat-
uration, such as SNAP-tag or Llama-tag [230,231]. In addition, the correlation between mRNA and protein
expression of target genes will be critical to account for species-to-species and isoform-to-isoform variations. In
combination with advanced fluorescence microscopes that induce only low phototoxicity, signalling can be
quantified at a high spatiotemporal resolution within multicellular systems [232,233]. (3) To reveal the com-
plete picture of cellular signalling dynamics, it is essential to understand the abundance of various signalling
components within a cell, as well as their interaction partners. With advances in omics approaches, this indeed
becomes feasible. Bulk and single-cell transcriptomics have revealed cyclic genes in vertebrate segmentation
[87,177,234]. However, since the transcriptome does not necessarily reflect protein expression, the proteome
and phosphoproteome, ideally at a single-cell resolution, should be analysed in addition to revealing the signal-
ling components in cells [24,235–237]. Such approaches will start to give a clear picture of how signalling
dynamics are generated and how they control cellular behaviour. (4) To understand the function of signalling
dynamics, we need tools to specifically modulate dynamics without altering overall signalling activity. The
establishment of optogenetic and microfluidic approaches have enabled changing dynamics with high precision
[179,203,238]. Systems to externally induce the degradation of selected proteins [239–241] will allow the dissec-
tion of how specific proteins, for instance negative feedback regulators, affect signalling dynamics. (5) Synthetic
biology and bioengineering approaches then allow researchers to build intercellular signalling networks in vitro,
modulate them and test predictions on the functionality of these networks [159,160,242].
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To conclude, dynamic signalling is a common phenomenon in the animal kingdom. With technological
advances we have started to reveal the functional significance of signalling dynamics in multicellular systems.
This will allow us to study the role in different model systems to reveal general principles of its functioning. To
dissect the molecular mechanism of how dynamics are generated and how they control cellular behaviour, it
will be essential to transfer our understanding of signal transduction cascades at sub-cellular and molecular
levels to multicellular systems and model systems of embryonic development. Moreover, the same signalling
pathways, governing embryonic development, also control adult tissue homeostasis and mutations in signalling
pathways induce and promote pathological conditions such as cancer [209,219,243,244]. It will be intriguing to
compare how signalling dynamics modulate embryonic development, tissue homeostasis and cancer biology.
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224 Zagorski, M., Tabata, Y., Brandenberg, N., Lutolf, M.P., Tkačik, G., Bollenbach, T. et al. (2017) Decoding of position in the developing neural tube from
antiparallel morphogen gradients. Science 356, 1379–1383 https://doi.org/10.1126/science.aam5887

225 El-Sherif, E., Averof, M. and Brown, S.J. (2012) A segmentation clock operating in blastoderm and germband stages of Tribolium development.
Development 139, 4341–4346 https://doi.org/10.1242/dev.085126

226 Sarrazin, A.F., Peel, A.D. and Averof, M. (2012) A segmentation clock with two-segment periodicity in insects. Science 336, 338–341 https://doi.org/
10.1126/science.1218256

227 Liao, B.-K. and Oates, A.C. (2017) Delta-Notch signalling in segmentation. Arthropod. Struct. Dev. 46, 429–447 https://doi.org/10.1016/j.asd.2016.11.007
228 Gupta, A., Lutolf, M.P., Hughes, A.J. and Sonnen, K.F. (2021) Bioengineering in vitro models of embryonic development. Stem Cell Rep. 16,

1104–1116 https://doi.org/10.1016/j.stemcr.2021.04.005
229 El Azhar, Y. and Sonnen, K.F. (2021) Development in a dish- models of mammalian embryonic development. Front Cell Dev Biol. 9, 655993 https://doi.

org/10.3389/fcell.2021.655993
230 Gautier, A., Juillerat, A., Heinis, C., Corrêa, Jr, I.R., Kindermann, M., Beaufils, F. et al. (2008) An engineered protein tag for multiprotein labeling in

living cells. Chem. Biol. 15, 128–136 https://doi.org/10.1016/j.chembiol.2008.01.007
231 Bothma, J.P., Norstad, M.R., Alamos, S. and Garcia, H.G. (2018) Llamatags: a versatile tool to image transcription factor dynamics in live embryos.

Cell 173, 1810–1822 https://doi.org/10.1016/j.cell.2018.03.069
232 Serra, D., Mayr, U., Boni, A., Lukonin, I., Rempfler, M., Challet Meylan, L. et al. (2019) Self-organization and symmetry breaking in intestinal organoid

development. Nature 569, 66–72 https://doi.org/10.1038/s41586-019-1146-y
233 Strnad, P., Gunther, S., Reichmann, J., Krzic, U., Balazs, B., de Medeiros, G. et al. (2016) Inverted light-sheet microscope for imaging mouse

pre-implantation development. Nat. Methods 13, 139–142 https://doi.org/10.1038/nmeth.3690
234 Krol, A.J., Roellig, D., Dequeant, M.L., Tassy, O., Glynn, E., Hattem, G. et al. (2011) Evolutionary plasticity of segmentation clock networks. Development

138, 2783–2792 https://doi.org/10.1242/dev.063834
235 Rudolph, J.D., de Graauw, M., van de Water, B., Geiger, T. and Sharan, R. (2016) Elucidation of signaling pathways from large-scale phosphoproteomic

data using protein interaction networks. Cell Syst. 3, 585–593.e3 https://doi.org/10.1016/j.cels.2016.11.005
236 Gerlach, J.P., van Buggenum, J.A.G., Tanis, S.E.J., Hogeweg, M., Heuts, B.M.H., Muraro, M.J. et al. (2019) Combined quantification of intracellular

(phospho-)proteins and transcriptomics from fixed single cells. Sci. Rep. 9, 1469 https://doi.org/10.1038/s41598-018-37977-7

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY-NC-ND). 4069

Biochemical Journal (2021) 478 4045–4070
https://doi.org/10.1042/BCJ20210043

D
ow

nloaded from
 http://portlandpress.com

/biochem
j/article-pdf/478/23/4045/925623/bcj-2021-0043c.pdf by guest on 10 July 2024

https://doi.org/10.1038/ncb1543
https://doi.org/10.1016/j.molcel.2011.11.023
https://doi.org/10.15252/msb.20166982
https://doi.org/10.1038/ncb1994
https://doi.org/10.1038/s41556-021-00654-5
https://doi.org/10.1038/s41556-021-00654-5
https://doi.org/10.1038/s41556-021-00654-5
https://doi.org/10.1038/s41556-021-00654-5
https://doi.org/10.1038/s41556-021-00654-5
https://doi.org/10.1016/j.devcel.2017.07.014
https://doi.org/10.1073/pnas.0804598105
https://doi.org/10.1073/pnas.2006965117
https://doi.org/10.1016/j.cels.2020.02.005
https://doi.org/10.1016/j.cub.2015.05.039
https://doi.org/10.1016/j.devcel.2019.01.009
https://doi.org/10.1016/j.devcel.2019.01.009
https://doi.org/10.1016/j.devcel.2021.05.006
https://doi.org/10.1016/j.devcel.2021.05.007
https://doi.org/10.1038/s41467-018-04527-8
https://doi.org/10.1038/s41467-018-04527-8
https://doi.org/10.1038/s41467-018-04527-8
https://doi.org/10.1038/s41467-018-04527-8
https://doi.org/10.1126/science.aao3048
https://doi.org/10.1098/rsfs.2020.0069
https://doi.org/10.1126/science.aba7667
https://doi.org/10.1002/dvdy.21182
https://doi.org/10.1016/j.cell.2011.10.047
https://doi.org/10.1126/science.aam5887
https://doi.org/10.1242/dev.085126
https://doi.org/10.1126/science.1218256
https://doi.org/10.1126/science.1218256
https://doi.org/10.1016/j.asd.2016.11.007
https://doi.org/10.1016/j.stemcr.2021.04.005
https://doi.org/10.3389/fcell.2021.655993
https://doi.org/10.3389/fcell.2021.655993
https://doi.org/10.1016/j.chembiol.2008.01.007
https://doi.org/10.1016/j.cell.2018.03.069
https://doi.org/10.1038/s41586-019-1146-y
https://doi.org/10.1038/s41586-019-1146-y
https://doi.org/10.1038/s41586-019-1146-y
https://doi.org/10.1038/s41586-019-1146-y
https://doi.org/10.1038/nmeth.3690
https://doi.org/10.1242/dev.063834
https://doi.org/10.1016/j.cels.2016.11.005
https://doi.org/10.1038/s41598-018-37977-7
https://doi.org/10.1038/s41598-018-37977-7
https://doi.org/10.1038/s41598-018-37977-7
https://doi.org/10.1038/s41598-018-37977-7
https://creativecommons.org/licenses/by-nc-nd/4.0/


237 van Eijl, R., van Buggenum, J., Tanis, S.E.J., Hendriks, J. and Mulder, K.W. (2018) Single-Cell ID-seq reveals dynamic BMP pathway activation
upstream of the MAF/MAFB-Program in epidermal differentiation. iScience 9, 412–422 https://doi.org/10.1016/j.isci.2018.11.009

238 Sonnen, K.F. and Merten, C.A. (2019) Microfluidics as an emerging precision tool in developmental biology. Dev. Cell 48, 293–311 https://doi.org/10.
1016/j.devcel.2019.01.015

239 Nabet, B., Roberts, J.M., Buckley, D.L., Paulk, J., Dastjerdi, S., Yang, A. et al. (2018) The dTAG system for immediate and target-specific protein
degradation. Nat. Chem. Biol. 14, 431–441 https://doi.org/10.1038/s41589-018-0021-8

240 Caussinus, E. and Affolter, M. (2016) deGradFP: a system to knockdown GFP-tagged proteins. Methods Mol. Biol. 1478, 177–187 https://doi.org/10.
1007/978-1-4939-6371-3_9

241 Zhang, L., Ward, J.D., Cheng, Z. and Dernburg, A.F. (2015) The auxin-inducible degradation (AID) system enables versatile conditional protein depletion
in C. elegans. Development 142, 4374–4384 https://doi.org/10.1242/dev.125393

242 Ho, C. and Morsut, L. (2021) Novel synthetic biology approaches for developmental systems. Stem Cell Rep. 16, 1051–1064 https://doi.org/10.1016/j.
stemcr.2021.04.007

243 Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of cancer: the next generation. Cell 144, 646–674 https://doi.org/10.1016/j.cell.2011.02.013
244 Weterings, S.D.C., Oostrom, M.J. and Sonnen, K.F. (2021) Building bridges between fields: bringing together development and homeostasis.

Development 148, dev193268 https://doi.org/10.1242/dev.200265

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY-NC-ND).4070

Biochemical Journal (2021) 478 4045–4070
https://doi.org/10.1042/BCJ20210043

D
ow

nloaded from
 http://portlandpress.com

/biochem
j/article-pdf/478/23/4045/925623/bcj-2021-0043c.pdf by guest on 10 July 2024

https://doi.org/10.1016/j.isci.2018.11.009
https://doi.org/10.1016/j.devcel.2019.01.015
https://doi.org/10.1016/j.devcel.2019.01.015
https://doi.org/10.1038/s41589-018-0021-8
https://doi.org/10.1038/s41589-018-0021-8
https://doi.org/10.1038/s41589-018-0021-8
https://doi.org/10.1038/s41589-018-0021-8
https://doi.org/10.1007/978-1-4939-6371-3_9
https://doi.org/10.1007/978-1-4939-6371-3_9
https://doi.org/10.1007/978-1-4939-6371-3_9
https://doi.org/10.1007/978-1-4939-6371-3_9
https://doi.org/10.1007/978-1-4939-6371-3_9
https://doi.org/10.1007/978-1-4939-6371-3_9
https://doi.org/10.1242/dev.125393
https://doi.org/10.1016/j.stemcr.2021.04.007
https://doi.org/10.1016/j.stemcr.2021.04.007
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1242/dev.200265
https://creativecommons.org/licenses/by-nc-nd/4.0/

	Signalling dynamics in embryonic development
	Abstract
	Introduction
	Function of signalling dynamics
	Dynamic signal encoding
	Regulation of repetitive events
	Communication across tissues

	Signalling dynamics from a biochemical perspective

	Notch signalling
	Cis- and lateral inhibition
	Cellular Notch signalling oscillations
	Spatiotemporal Notch dynamics
	Specificity in information transmission

	Wnt signalling
	Wnt gradient
	Feedback mechanisms
	Combinatorial use of Wnt ligands and receptors
	Fold change detection
	Adaption
	Wnt signalling oscillations

	MAPK signalling
	Scaffold proteins in ERK signalling
	ERK signalling dynamics
	ERK activity pulses
	ERK signalling oscillations

	Species-specific differences in signalling dynamics
	Perspective
	Competing Interests
	Funding
	References


